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INTERFEROMETER INVESTIGATION OF CONVECTION IN A HORIZONTAL 

FLUID LAYER 

Z. P. Shul'man, F. Kh. Tazyukov, 
F. A. Garifullin, and P. A. Norden 
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The temperature field in free convective motion of a non-Newtonian fluid is stud- 
ied by using an interferometer. A method of constructing the flow pattern by 
means of the interferograms obtained is developed, 

An interferometer method is used extensively to visualize temperature fields in gases 
and liquids [i]. Thus, thermal regime characteristics are determined for a horizontal liquid 
layer heated from below. A detailed description of the test and analysis methods of the re- 
sults obtained is presented in [2-4]. 

The flow pattern in gases and liquids can be observed by using an interferometer only 
when the velocity changes in the domain under investigation are large, resulting in notice- 
able density changes (compressibility) and, therefore, in changes in the refractive index 
also. The velocity gradients in free convection in a horizontal layer are so small that it 
is impossible to observe the flow pattern by means of an interferometer. 
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Fig. I. Schematic portrait of liquid 
rotation in two adjacent convective 
points. 

Certain types of convective motions do exist which are amenable to visualization, but 
only by using differential interferometry. 

A method of constructing the streamlines and computing the velocity field in free con- 
vection in a horizontal layer on the basis of results of measuring shear interferograms is 
proposed in this paper. 

i. Let us write the equation of motion in the Boussinesq approximation 

avi v.aV/ 1 Op § ~,ig~z T q_ 1 Oo~j (1)  
Ot q- ~dx-~-= Po Ox~ Po Ox~ 

We use the model of an elastic-- viscous second-order fluid for the extra-stress tensor 

jl( 1 ) .~ A ( I ) ~ ( 1 )  ~ ( 2 )  r %,.i i  @ + % ~ :  , tFlza fh ~h/  

where q0 i are constants of the model, and i3 ' A are Rivlin--Ericsen tensors. 

Eliminating 3p/3x i from (i) by using the operator curlcurl0z , then 
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d t  / Ox 2 

where 
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x 
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k = 1, 2 ,  3 ;  

(2) 

Therefore, L(M) includes the nonlinear characteristics of the motion and the viscoelastic 
properties of the liquid. 

Let the horizontal layer under investigation be bounded by two fixed solid plates, and 
the temperature as a function of the coordinates be known in advance. Under such hypotheses, 
it is sufficient to consider (2) with boundary conditions on the horizontal plates to deter- 
mine the flow pattern. 

Convective "rolls" with axes parallel to the horizontal boundaries were detected in our 
tests with liquids (distilled water, solutions of polyoxyethylene, polyox WSR-301 of different 
concentrations, etc.). 

Because of the repeatability of the elements of the flow pattern along the x axis with 
a period corresponding to the spacing between adjacent rolls (they rotate in opposite direc- 
tions), it is sufficient to examine one pair of rolls. The steady-state motion equation in 
the rolls will have the form 
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Fig. 2. Interferograms of the temperature field (A) 
and the field of temperature differences of the rolls 
(B) in a layer of the water solution of polyox WSR-301 
(d = i0 mm, Pr = 340, Ra = 4250, concentration 0.5%). 

02T (3) %'oV2V2Uz - -  g~ - -  L (M). 
Ox z 

We denote the velocity and temperature in the left roll by ~1(x, z) and T~(x, z) and 
in the right by ~(x, z) and T2(x, z). Then for a pair of appropriate points selected arbi- 
trarily (e.g., the points Mx and M2 in Fig. i), on two adjacent rolls, the velocities are 
equal in magnitude and opposite in direction, i.e., ~(x, z) = --~x(x, z). 

If the velocity and temperature fields of the convective roll are superposed on the 
corresponding field of the adjacent roll, then we describe the resultant motion by the equa- 
tion 

2VoVZVZV~ = g=OzO/Ox z, (4) 

where @ (x, z) = T~(x, z)--T2(x, z) is the horizontal component of the temperature difference 
at any pair of adjacent rolls. 

Equation (4) is valid in the whole domain of convective field superposition. As will 
be shown below, the described superposition of the fields is determined by using the method 
of differential interferometry. We write (4) in terms of the stream function ~(x, z) and the 
temperature difference 8(x, z): 

0 0 ~ 
2% ~ V2V2~ (x, z) = g= 0-~ 0 (x, z). (5) 

Integrating this last expression along the x axis, we obtain 

oe  (x, z) + C(z), 2~,oV2V2r (x, z) = g~z - ~ x  (6) 

which can be expressed in terms of the vortex ~ = --724: 

2%V2q (x, z) = g~ ~ (x, z) + C (z). 
OZ 

(7) 

Let us assume that the vortex lines are rectilinear on the roll boundaries. Therefore, 
the condition 
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S,~ Fig. 3. Graph of the distributions of 
the function o (curve i) and 3O/3x 

~ ~  \ ~ \ . 2 ~  (curve 2) along the axis OX constructed 
x for z = d/2. 

~Is -~ 0 (8) 

should be satisfied for (7), where S is the boundary of the roll domain. The opposite rota- 
tion of the adjacent rollers indicates the presence of points of inflection on the boundaries 
of the vortex lines, i.e., V2~[S = 0. As will be shown below, 3@/3X]s = 0. Therefore, the 
function C(z) is zero for any arbitrary section z = const, i.e., everywhere in the domain of 
the convective roll. 

Therefore, (7) and (8) can be written in the form 

2vovZq (x, z) = gg  O0 (x, z)/Ox, (9) 

nts = o. ( l O )  

The non-Newtonian properties of the liquid under investigation were implicit in the function 
3@(x, z)/3x, determined from tests by interferograms (Fig. 2). 

Having determined the vortex from the boundary-value problem (9) and (i0), the stream 
function distribution ~(x, z) over the roll can be determined from the problem 

v~,(x,  z ) = - - n ( x ,  z), (11) 

*Is ~- o. (12) 

Therefore, the distribution of the function 30(x, z)/3x in the plane of the roll, which 
is determined from interferograms of the fields 30/3x and O obtained on an instrument IAB- 
451 with the interference adapter RP-452 and the laser LG-75 as light source, must be known 
to solve the problems (9)-(12). 

An interferogram of the temperature field in a viscoelastic liquid layer (polyox WSR- 
301) is represented in Fig. 2A. 

The nature of the isotherm indicates convection of the roll type in the liquid layer. 
The boundaries between adjacent rolls are seen in the form of vertical dark and light lines. 
It is interesting to note that these boundaries between the rolls have not yet been observed 
during convection in Newtonian fluids. The vertical boundaries between adjacent rolls in a 
non-Newtonian fluid layer can be explained as follows. At the upper (cold) boundary of the 
layer, the fluid particles in adjacent rolls move opposite to each other on being cooled, 
and on meeting rotate downward to form a common vertical jet where the temperature is lower 
than to the right and left of this jet. The next boundary between the adjacent rolls is 
that recalling a heated jet formed by two merged flows of adjacent rolls proceeding from 
the lower (hot) boundary of the layer. The maeromolecules of the non-Newtonian fluid are 
oriented in the domains of vertical cold and hot flows because of the maximal velocity grad- 
ient on the horizontal boundaries of the layer. Precisely the orientation contributes to 
the visualization of the vertical boundaries between the adjacent rolls. Their distinctive 
coloring (dark and light) is explained by the opposing directions of the temperature gradient 
in the cold and hot vertical jets. 

An interferogram obtained during adjustment of the adapter RP-452 by a horizontal shift 
with a step equal to the roll diameter is presented in Fig. 2B. The periodic structures 
of the form a (Fig. 2B) are therefore the interference pattern of the difference in the 
temperature fields of each pair of adjacent rolls, i.e., the interferogram of the field O. 
The direction of the interference fringes indicates that 30/3x = 0 on the roll boundaries, 
as was mentioned above. 

Meanwhile, this same interferogram can be considered as a number of periodic structures 
of the form c (Fig. 2) with the form of closed concentric curves greatly reminiscent of the 
lines ~ = const or n = const [5]. 
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Let us examine the physical meaning and the relationship between these two structures 
mentioned above by relying on processing of the interferogram (Fig. 2) for the temperature 
fields O(x, z) = T~ --T2 of two adjacent rolls at a certain height zl. The result of photom- 
etry (curve i in Fig. 3) indicates that the distribution O = ~(x, zl) can be approximated 
by the function k(zl)cos x, k(zl) @ [0, I]. 

By differentiating the function O = O(x, z~) we construct the dependence on the coord- 
inate x (curve 2 in Fig. 3). As should be expected, the dependence ~O/~x = DO(x, zl)/~x is 
sinusoidal. We obtain this same sinusoid by photometry of a structure of the form of Fig. 2. 
Therefore, differentiation of the field O = O(x, zl) with respect to x results in a shift 
of the periodic structure in Fig. 2 to the left on half the roll. On the other hand, a 
cosinusoidal nature of the distribution O = O (x, z~) would permit the assertion that inte- 
grating the function O = O(x, z,) would lead to a shift to the right on half the roll. 

Thus, periodic structures of the form a (see Fig. 2) yield the isolines of O, and struc- 
tures of the form c yield the isolines of ~O/~x = ~@(x, zl)/~x. 

2. Let us examine the solution of the system (9) and (i0), which is a classical mathe- 
matical physics problem. Using the known method of the Green's function [6], we obtain a 
solution of the problem (9), (i0) in the form of the integral 

~zg [[OO in 1 dxdz, (13) 
(~, 0 = - 2~--~- .j~ ax I~ (y, ~)I 

(x,z) 

where ~,(y, T) is a function that maps the domain of the convective roll conformally on the 
unit circle. However, utilization of (13) in engineering calculations is difficult; conse- 
quently, we propose the following method to determine the roll-type convective flow pattern. 

Let us make Eq. (9) dimensionless by using the following variable: (~, ~) = (x~/a, z~/d). 
Then (i0) is reduced to 

R~ a@ 
V~ll = _ _  _ _ ,  2 a~ (14) 

where R M is the dimensionless parameter 

Z~O 
(15) 

For any given boundary conditions the flow can therefore be characterized by one dimen- 
sionless parameter R M. The difference between the parameter R M and the ordinary Rayleigh 
number 

R a -  g~AT d3 (16) 
~u 

is the replacement of the vertical temperature difference AT by the maximal horizontal compo- 
nent of the temperature difference of corresponding points of the convective rolls @max and 
the normalization of the layer thickness to the number ~. Let us note that just in the case 
of the convective regime is R M different from zero, which indicates the introduction of this 
dimensionless parameter is well-founded. The introduction of R M permitted approximating the 
distribution of@' and ~O/~x for ~ = ~/2 by trigonometric functions of the form (Fig. 4) @' = 
cos ~, ~@'/~ = --sin ~. Therefore, by using the results of interferometer investigations of 
the temperature field, and knowing the cosine nature of the distributionO(x, z), the numeri- 
cal values of the stream function ~ and the vortex function ~ can be determined in the region 
of the convective roll. 

The method utilized is suitable for small supercriticalities when the velocity and tem- 
perature distribution in the roll domain can be represented by a separate Fourier component, 
i.e., for ~ = (Ra--Racr)/Racr~3 ("linear" domain) [7]. For e > 3 higher harmonics are al- 
ready of substantial influence. 

The distribution of the vertical component of the convective velocity Wma x is shown in 
Fig. 4 for a horizontal layer of, an aqueous polyox WSR-301 solution, computed by the method 
elucidated above for the section d/2. 
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Fig. 4. Distribution of the vertical fluid 
velocity component computed for the height 
d/2; x, mm; Wmax, mm/sec. 

NOTATION 

~, coefficient of volume expansion, Xi, (0, 0, i); g, free-fall acceleration; Po, 
fluid velocity; vi, velocity components; p, pressure, T, deviation of the temperature from 
the mean value; ~ij, tangential stress tensor; Pr = ~o/~, Prandtl number; Ra= (g~/~o~)ATd 3, 
Rayleigh number; ~o, kinematic viscosity coefficient; ~, thermal diffusivity coefficient; 
AT, temperature difference between the layer boundaries; d, layer thickness. 
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